• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Home
  • Features
  • Campus News
  • CSUDH.edu
  • Contact
  • People
    • Staff Spotlight
    • Faculty Highlights
    • Alumni
  • Magazine
  • For Journalists
    • CSUDH In The News
    • Press Releases
    • Facts and Figures
    • Find Media Experts
    • Gallery
    • News Reporting on Campus

CSUDH News

The primary source of news and information about California State University, Dominguez Hills, its students, faculty, and staff.

research

New 3D Images of Shark Intestines Show They Function Like Nikola Tesla’s Valve

July 21, 2021 By Lilly McKibbin

Pacific spiny dogfish intestines and Pacific spiny dogfish
Left: a CT scan image of the spiral intestine of a Pacific spiny dogfish shark (Squalus suckleyi). The beginning of the intestine is on the left, and the end is on the right. Right: a live Pacific spiny dogfish shark. Images courtesy of Samantha Leigh.

Contrary to what popular media portrays, we actually don’t know much about what sharks eat. Even less is known about how they digest their food, and the role they play in the larger ocean ecosystem.

For more than a century, researchers have relied on flat sketches of sharks’ digestive systems to discern how they function — and how what they eat and excrete impacts other species in the ocean. Now, researchers have produced a series of high-resolution, 3D scans of intestines from nearly three dozen shark species that will advance the understanding of how sharks eat and digest their food.

“It’s high time that some modern technology was used to look at these really amazing spiral intestines of sharks,” said lead author Samantha Leigh, assistant professor of biology. “We developed a new method to digitally scan these tissues and now can look at the soft tissues in such great detail without having to slice into them.”

The research team from California State University, Dominguez Hills, the University of Washington and University of California, Irvine, published its findings July 21 in the journal Proceedings of the Royal Society B.

The researchers primarily used a computerized tomography (CT) scanner at the UW’s Friday Harbor Laboratories to create 3D images of shark intestines, which came from specimens preserved at the Natural History Museum of Los Angeles. The machine works like a standard CT scanner used in hospitals: A series of X-ray images is taken from different angles, then combined using computer processing to create three-dimensional images. This allows researchers to see the complexities of a shark intestine without having to dissect or disturb it.

“CT scanning is one of the only ways to understand the shape of shark intestines in three dimensions,” said co-author Adam Summers, a professor based at UW Friday Harbor Labs. “Intestines are so complex — with so many overlapping layers, that dissection destroys the context and connectivity of the tissue. It would be like trying to understand what was reported in a newspaper by taking scissors to a rolled-up copy. The story just won’t hang together.”

From their scans, the researchers discovered several new aspects about how shark intestines function. It appears these spiral-shaped organs slow the movement of food and direct it downward through the gut, relying on gravity in addition to peristalsis, the rhythmic contraction of the gut’s smooth muscle. Its function resembles the one-way valve designed by Nikola Tesla more than a century ago that allows fluid to flow in one direction, without backflow or assistance from any moving parts (watch a video of how the Tesla valve works).

This finding could shed new light on how sharks eat and process their food. Most sharks usually go days or even weeks between eating large meals, so they rely on being able to hold food in their system and absorb as many nutrients as possible, Leigh explained. The slowed movement of food through their gut caused by the spiral intestine probably allows sharks to retain their food longer, and they also use less energy processing that food.

Because sharks are top predators in the ocean and also eat a lot of different things — invertebrates, fish, mammals and even seagrass — they naturally control the biodiversity of many species, the researchers said. Knowing how sharks process what they eat, and how they excrete waste, is important for understanding the larger ecosystem.

“The vast majority of shark species, and the majority of their physiology, are completely unknown. Every single natural history observation, internal visualization and anatomical investigation shows us things we could not have guessed at,” Summers said. “We need to look harder at sharks and, in particular, we need to look harder at parts other than the jaws, and the species that don’t interact with people.”

The authors plan to use a 3D printer to create models of several different shark intestines to test how materials move through the structures in real time. They also hope to collaborate with engineers to use shark intestines as inspiration for industrial applications such as wastewater treatment or filtering microplastics out of the water column.

Other co-authors on the paper are Donovan German of University of California, Irvine, and Sarah Hoffmann of Applied Biological Services.

This research was funded by Friday Harbor Laboratories, the UC Irvine OCEANS Graduate Research Fellowship, the Newkirk Center Graduate Research Fellowship, the National Science Foundation Graduate Research Fellowship Program and UC Irvine.

News coverage of this story has appeared in:

The New York Times
Smithsonian Magazine
Wired.com
NewScientist
Futurity
Ars Technica
Big Think
CTV News
IFLScience

Primary Sidebar

Social Media

  • Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube
2nd in Economic Mobility

Press Releases

Installation view of “Personal, Small, Medium, Large, Family”

CSUDH University Art Gallery Presents “Personal, Small, Medium, Large, Family” by Mario Ybarra, Jr.

September 19, 2023

Student walking near Science and Innovation building on campus.

CSUDH Recognized as a Top Performer in the 2023 Sustainable Campus Index

September 15, 2023

Map showing geography of Southern California

Getty Foundation Awards CSUDH $180,000 for Brackish Water Los Angeles

May 9, 2023

See all Press Releases ›

CSUDH in the News

Students working on computers.

Daily Breeze: CSUDH Offers New Master Program for Incarcerated People for Fall 2023

September 11, 2023

Woman doing work on a computer.

KTLA: California Department of Corrections, CSU Dominguez Hills Unveils Graduate Program for Inmates

September 5, 2023

Exterior photograph of San Quentin State Prison

EdSource: A First for California’s Incarcerated Students – Now They Can Earn Master’s Degrees

September 5, 2023

See more In the News ›

Faculty Highlights

Headshot of Carolyn Caffrey.

Faculty Highlights: September 2023

Headshot of Jonathon Grasse

Faculty Highlights: August 2023

Rama Malladi

Faculty Highlights: July 2023

Staff Spotlight

Cesar Mejia Gomez

Staff Spotlight: Cesar Mejia Gomez

Staff Spotlight: Ludivina Snow

Staff Spotlight: Gilbert Hernandez

Footer

California State University, Dominguez Hills Logo

Related Sites

  • csudh.edu
  • magazine.csudh.edu
  • gotoros.com

EMAIL NEWSLETTER

Get CSUDH News directly in your inbox

Copyright © 2023 · California State University, Dominguez Hills